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| nstrument Deployment

In the basdline design, the instruments each have their own light pick-off and
focal plane.

This raises three concerns:

1. Establishing and keeping the instruments in focus simultaneoudly.

2. Establishing strong coupling between the precision star guiders and the focal
planes.

3. A second complex light path has to be created if we want an IR imager larger
than1l x 1.

A concept in early development is to coalesce the instruments around the main
focal plane, FIDO, fully integrated focal plane option.

| ssues associated with FIDO:

» Differing plate scales of CCDs and IR detectors due to different pixel sizes.
* Potentially different operating temperatures for CCDs and IR detectors.

o Implementation of shutter and filters.

Decision will be made in June-July 2001.




FIDO Example

Components:

« 236 CCDs

«24 1k x 1k HgCdTe
* 2 Spectrographs

» 8 star guider CCDs

|R:
0.028 5. deg.
0.125 asec/pixel
Visible:
0.87 5. deg.
0.07 asec/pixd
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GigaCam
An Optical Imager for SNAP

Chris Bebek
Cornell University/L BNL



Overview

Talk overview

* Development and commer cialization of a new CCD.
o Gearing up to demonstrate that the CCDs ar e scientific grade devices.
e Our plan to understand the CCDs performancein a space.

» Development of packaging technology to allow a large mosaic.
» Development of radiation shielding concept.

{Hubble
WFPC2 FOV

NGST FOV




Science driven requirements

Populate 1° x 1° focal plane with small dead space.

Broad spectral response with high quantum efficiency.

L ow read noise to allow stacking multiple exposures.

Low dark current to support long exposur es.

Stable performancein presence of radiation (>3 yrs).

Field-of-view Approximately 1° x 1°
Plate Scale 0.07 to 0.10 arcsec/pixel (0.10 nominal)
Pixelization Approx. 32k x 32k CCD mosaic

Wavelength coverage

350 nm — 1000 nm

Detector Type

High-Resistivity p-channel CCDs

Detector Architecture

2.5k x 2.5k, 12 or 10.5 nm pixel

Detector Array Temperature

135- 150K

Detector Quantum Efficiency:

65% @ 1000 nm, 92% @ 900 nm, >85% @
400-800 nm

Photometric Accuracy 1% relative

Read Noise 4 e @100 kHz

Exposure Time 100 sec to 1000 sec (single exposures)
Dark Current 0.04 e-/sec/pixel

Readout Time

20 sec




R& D Issues

Main R& D issues

* Develop and commercialize anew type of CCD.
 Packaging the CCDs that allows efficient tiling of afocal plane.
* Protecting the CCDs from thermal and particle backgrounds.

Technical challenges

* Producing 300 mm thick, 150 mm wafers at a commercia foundry.
 Testing large numbers of devices.



Why Develop a New CCD?

We believe we can uniquely achieve the following attributes:

Populate 1° x 1° focal plane with small dead space,
88% packing efficiency.

Broad spectral response with high quantum efficiency,
High QE from 350 nm to 1000 nm.

L ow read noise to allow stacking multiple exposur es,
2e at 100 kHz read rate.

Low dark current to support long exposur es,
0.001 e's.

Stable performancein presence of radiation (>3 years).
Radiation tolerant chargetransfer, dark current, and read noise.



New CCD Technology

J-phase
CCD structure
Poly gate
electrodes  buried
'/ pchannel
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volume
Camm S

Transparent 0 Bias
rear window voltage

* New kind of CCD developed at
UCB/LBNL.

* High resstivity, n-type, p-channd, fully

A depleted silicon —same asused in HEP
1) Conventional MOS processes o[ con vertex detectors.

with no thinning _ _

=> "inexpensive’ e Rear illuminated.

) Full quantumefficiency ~ © Antir eflection coating.

>lm=>wiingng o Thin polysilicon window for good blue
3) Good blue response with response.
stitably designed rear contact

) Raditin foleant e Good QE at 1 mm and no fringing —

300 mm thicknessand | . ~100 mm.
Disadvantuges: * No costly thinning of devices.

1) Enhanced sensitivityto ~~ « High-purity silicon has better radiation

radiation (x-rays,cosiic tolerancefor space applications.
rays, radioactive decay)

Steve Holland will talk moreon
thetechnology Friday after noon.



| ssuesfor CCDs M SNAPL

Chargetransfer efficiency Clock shaping
Charge dependence Diffusion
T dependence Pixel size
Radiation damage Well depth
Read noise |ntra-pixel response
Readout rate Yied
Radiation damage Grinding/polisning
Defects Quality
Erasure Precision assemblies
Crosstalk Shielding




LBNL 2k x 2k

First large format CCD made at LBNL

— 2Kk X 2K, 15 nm pixels.

1980 x 800, 15 nm pixels.
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L BNL 2k x 2k results
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L BNL 2k x 2k results

KPNO 4-m PF spec (Arjun Dey, 15 Nov 00)
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Image: 200 x 200 15 mm LBNL CCD in Lick Nickel 1m.
Spectrum: 800 x 1980 15 mm LBNL CCD in NOAO KPNO spectrograph.



LBNL 2k x 4k

USAF test pattern. Trap stesfound

by pocket pumping.
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Next LBNL CCDs

In February, the Micro Systems Lab will start production of wafers
concentrating on 2k x 4k 15 mm devices.

There will be no SNAP specific devices on the wafers.

Rather, we will use the yields of this run to understand MSL’srole
as a backup foundry for SNAP.

Four SNAP-sized CCDs can befit on adedicated 100 mm wafer.



Commercial 2k x 2k

The LBNL 2k x 2k layout and recipe where
transferred to a commercial foundry.
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Commercial PIN Diodes

Array of 3mm x 3 mm PIN diodes
on a 150 mm diameter wafer.
Due January 2001.

First use of 300 mm 150 mm wafer
by the vendor — usually 600 rm.

Thiswill bewafer probed to make
an x-ydark current tolook for any
variationsin processing.




Commercial SNAP CCD

January submission.
Lot 1-150 mm, 600 mm thick.
Lot 2 - 150 mm, 300 mm thick.

Will contain SNAP CCDs - =
2.5k x 2.5k 12 mm w/ vertical notch. '
2.5k x 2.5k 12 mm w/o vertical notch.
2.8k x 2.8k 10.5 mm.

: == _
Will seeif vendor can meet 7 week QS sy | sye || syae (T |
delivery for lot 1 and 16 weeksfor lot 2.

CCD sizeischosen to fit within vendor’s
reticles, minimize chargetransfer length, : = |
yet take advantage of large format to % ™
reduce partscount. Thesizealso '
populatesan LBNL 4" wafer efficiently.

A dedicated SNAP run can have 9
devices per wafer.



SNAP CCD Concept

2 x 2860 x 1430 10.5mMn
or
2 X 2520 x 1260 12.0 mm

4-corner and 2-corner readout.

Read noiseaslow as? e.
Sengitivity ashigh as6 ny//e.

Hastop and bottom frame store
(not shown).

2860 x 1430 10,5 pm
PIXEL FIELD

2520 x 1260 12 pm
PIXEL FIELD




CCD Detalls

Thefigureisan abstraction of the serial register neighborhood.

- s | J i 1 | i e
substrate S S substrate
: Vv V

Define f o
* Parallél
« Serial RE— w
. Read ﬂOISG kTC noise Kflicker noise

| Pixel Serial Register }—"
Remember the two i, Vi .
transistorsfor later. % B o e

substrate



Test Facilities

e 3dewars

» 2 Leach readout controllers
e 2 SUN workstations

 PC with CD-RW

* Vacuum furnace

» -40C refrigerator

» Class 10000 clean room

o Wire-bonder




| R Labs Dewar

CCDsareoperated at a nominal 150 K to make dark current small.
Weuse LN, athermal switch, and a cold finger pressing against a face of the CCD
(typically mounted on an AIN wafer).

L ocal eectronics CCD




Rapid Cycle Dewar

Chicken feeder dewar — ancient LBNL technology.

Quick release access plates, small volume and mass should give a cool-
down/war m-up cycle under 2 hours.




| mage Analysis Software
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JAVA Controller Software

Adding functionality
to the Voodoo JAVA
interface.

Inter active modification =
of clock and bias voltages
without reboots (required
DSP code mods).

Add ability to gracefully -
enter and exit erase mode
(required DSP code mods).
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Non-optical M easur ements

Noise vs Sample Time

for LBNL CCDs Commemially-iabncated 1 100mR00 tesied al LBNL
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Read Noise M easur ements

Noise after correlated double sampling.

Noise vs Sample Time
for LBNL CCDs
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M easur ements courtesy of Lick/UCSC.

L ow capacitance readout geometry.
Read noise of 2e and sensitivity of 6 mV//e.

Floating
diffusion ]
capacitor .

Sour ce
follower

Serial
register
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Dark Current M easur ement

800 x 1100 CCD overscan

4.0x107

0: P RS | PR B

2220 2225 2239 2233 2240 2245 z2o0
dark currentetime{ADU)=7235.92-2234.80= 1.03

200 404 804 800 1060 1260
over

Measured dark current per 1000 sec obtained
by fitting image area and over scan areas and
subtracting gaussian peaks.

Dark charge collected = 1.03/(0.41*1000) =
0.0025 e-/sor 9.0 e-/pixel/hour.

2255



CTE Measurement

note

For every pixel to pixel chargetransfer thereis | |
Commercially-fabricated 1100x800 tested at LBNL

the potential for some charge loss.

CTl isthe chargetransfer inefficiency. g oo S0 STy Tronsier ST Grleelel L L
People often quote the more awkward
complement, the chargetransfer efficiency.

1000

A CTl or CTE isquoted for both the serial and ¢ Fit'to

parallel transfers. O -
Weusethe Mn ka x-ray line of 55Fe asa known " Gain =0.7534 £/ _0.0003 ADU/e-

deposition of 1620 electrons. oL e ]
We see how well 1620 electronsisreconstr ucted

as afunction of position in the CCD.

CTI of 5x10% aretypical.

200
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150(-
CTlI=1-CTE '
CTI"=(Q;-Q,)/n=Db*n/a
CTI =b/a for bla<<l

(nisthenumber of rows
or columns)
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Optical M easurements

Present abilities
* Linearity
 Wéell depth

e Erasure

Need to develop
« CTE vscharge
« QE

s MTF

* Trap density

» Crosstalk

View showing dewar with attached shutter and Optoliner
projector fitted with Nikon macro lens and xyz stage.



Linearity and Well Depth

V_Ve” depth Isafunction of plxel Measured Charge Capacity for 1100x800
SZE. CCD with 15 mm Pixels
200000

Weareinterested in small pixel 180000 o
sizesfor SNAPtominimizearea. | .~ 7

D, 140000

g 120000 /
Wehave 10.5, 12, and 15 nm S o /
p|Xe| szesto test. § 80000 /

g 60000 //
Scaling law isnot obvious and 7
needsto be measur ed. Y

0 T T T T T
0 0.5 1 15 2 2.5 3

Preliminary 12 mm well depth Exposure Time (sec)

found to be 150 ke.

«Saturation curve obtained by plotting peak
projected spot intensity ver sus exposuretime.

*Full-well capacity in electrons obtained by
scaling ADU’sby CCD gain.



Persistent | mages

Saturated images
can persist for hours.

We have an effective
erasing techniqgue —
flood channelswith
electrons.

Observe lowest dark

currents after an erase ,

cycle.

a0

Overexposure with a pinhole

09

409

mo

Saturating exposure

oo
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a0o

SRR Persistent image
&3 .

Erased image
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Radiation Tolerance

Radiation testing doneat LBNL 88" Cyclotron with 12 MeV protons.
(Scaling other results at different energiesisstraight forward.)

We measure FET |-V and sub-threshold curves (300 K), dark current,
read noise, and serial and parallel CTE pre- and post-radiation (150 K).

Thewill be an ongoing activity for the next two years— lar ge phase space
to map out.

Tested devices (all 15 mm)
CCD Type Radiation Dose
(protons/cm?)
1st Pass Total 2nd Pass Total 3rd Pass Total

W4U 1100 x 800 5.0x10°8 5.0x10°
W2U 1100 x 800 1.0x10° 1.0x10%
W2L 1100 x 800 5.0x10° 2.0x10%°

Devices wer e exposed at room temper ature and unpower ed.



Measured CTI

Radiation Tolerance cont.
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CTIl vs Radiation Dose

An estimated NIEL dose for 3 yearsduring
solar max is 2 x 10’ MeV/qg.
Thisisequivalent to 10° 12 MeV protons.
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Radiation Tolerance cont.

0.07

0.06

0.05

o
o
=

Dark Current (e /sec)
2

0.02

0.01

Dark Current vs Radiation Dose

Caveat: we do not have good temperature control.
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Radiation Tolerance cont.

* Near future plans;

—ATfter making some scheduled improvements in the test instrumentation (System noise
reduction, better temperature regulation), we plan to incrementally increase the proton
dose levels on the above CCD's to obtain additional damage data.

— Irradiate Commercialized CCD's for comparison.

—Developing new test protocols designed to produce additional damage information, e.g.,
pocket pumping to monitor trap devel opment.

o CCD improvements

—We note that the serial register already has an additional notch implant in the channel for
enhanced small charge CTE and radiation tolerance.

—1In the 12 nm device we are submitting, the parallel channels will also have a notch
Implant.



Diffusion

3-phase
CCD structure
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Diffusion cont.

Spreading at 300 Microns
Ma=irmrn Likelyhood Method
T T T T T
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Diffusion

Scaling law

D = (2:k*T/q)*up = 13mVup at 150K
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CCD Packaging

Packaging

e Support CCD

» Connection to cold plate

Four-side abuttabe for dense mosaic.

Build-in mechanical precision —no shimming.
Access to bonding pads

L ocal electronics

» Cable connector

* Low background radiation materials

Connector
“ pCB
“ Glue
“T— Invar/AIN base
. “ Glue
“— Si Detector
Wirebonds




CCD Assembly

Class 10000 cleanr oom Alignment and gluing assembly fixture
o Laminar flow bench » Worksfor devicesaslargeas 2k x 4k, 15 mm.
* Wire-bonder * Vacuum chuck can gointo 150 C oven, if req’d.

» VVacuum chuck fitsunder wire-bonder head.
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M osaic Packaging

With precision CCD modules, precision baseplate, and
adequate clearancesdesigned in, the focal plane assemble
Is“plug and play.” Final assembly can be surveyed cold.

/

late attached
ceradiator.




Shielding

Develop a CCD focal plane shield concept
to reduce:

«Stray light.

 Particle backgrounds — calculate doses
on imager; do electronics exposure at the
sametime.

*Black body thermal loads.



Particle Shielding

Particle background hastwo components
«Solar protons— sub-100 M eV
*Galactic cosmics

Solar protons are most damaging to CCDs
and some shielding makes a big impact.

Proton energy loss in Si
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Design a shield by minimizing the
convolution of flux, material
attenuation, and energy lossin silicon.



Thermal Shielding

Black body at 300 K isathermal load, not an optical load, ~450 W/m?2.
GigaCam is~0.1 m?, b ~50 W if nothing done.

Usethe particle shield asa thermal baffleto reduce solid angle.
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GigaCam Assembly

GigaCam

Folding
Mirror

Heat radiator



GigaCam Mounted in SNAP




Summary

Thehigh resistivity, n-type, p-channdl, fully depleted silicon technology
has produced functioning CCDswith good noise and QE performance.

Early evidenceisthat thetechnology is sufficiently radiation tolerant for
the SNAP mission.

The commercial foundry has made successful parts.

Wewill exercisethisfoundry several timesover the next 18 months.
SNAP-like partswill be availablein April.

300 mm thick, AR coated partsavailablein June.

We have built ateam to test CCDs.

We will be expanding our test capabilitiesto do moretypes of
optical measurements.

Thenext 18 monthswill seealot of detailed measurementsto fully
under stand the device characteristics.

From the above activities, we will have a good grasp on thetime and effort
and associated coststo produce CCDsfor GigaCam.



